Presynaptic capacitance measurements and Ca2+ uncaging reveal submillisecond exocytosis kinetics and characterize the Ca2+ sensitivity of vesicle pool depletion at a fast CNS synapse.
نویسندگان
چکیده
The intracellular Ca2+ sensitivity of synaptic vesicle fusion is an important determinant of transmitter release probability, but it is unknown for most CNS synapses. We combined whole-cell membrane capacitance measurements and Ca2+ uncaging at the large calyx of Held nerve terminals to determine the Ca2+ sensitivity of synaptic vesicle fusion at a glutamatergic CNS synapse, independent of recording EPSCs. Capacitance increases measured 30-50 msec after elevating the intracellular Ca2+ concentration ([Ca2+]i) by Ca2+ uncaging were half-maximal at approximately 5 microm [Ca2+]i. At 10 microm [Ca2+]i, capacitance increases reached maximal values (256 +/- 125 fF; mean +/- SD), indicating the depletion of an average pool of approximately 4000 readily releasable vesicles. Vesicle pool depletion was confirmed in cross-depletion experiments, in which capacitance responses were measured after Ca2+ uncaging, or after combined stimuli of prolonged presynaptic depolarizations and Ca2+ uncaging. To analyze the Ca2+-dependent rates of vesicle pool depletion, the capacitance rise after Ca2+ uncaging was fitted with single- or double-exponential functions. The fast time constants of double-exponential fits, and the time constants of single-exponential fits were 2-3 msec at 10-15 microm [Ca2+]i and reached submillisecond values at 30 microm [Ca2+]i. These results suggest that three to five readily releasable vesicles can fuse within <1 msec at each active zone of a calyx of Held, given that [Ca2+]i rises sufficiently high. Submillisecond kinetics of exocytosis are reached at significantly lower [Ca2+]i than at ribbon-type sensory synapses previously investigated by capacitance measurements.
منابع مشابه
Calcium Dependence of Exocytosis and Endocytosis at the Cochlear Inner Hair Cell Afferent Synapse
Release of neurotransmitter at the inner hair cell (IHC) afferent synapse is a fundamental step in translating sound into auditory nerve excitation. To study the Ca2+ dependence of the underlying vesicle fusion and subsequent endocytosis, we combined Ca2+ uncaging with membrane capacitance measurements in mouse IHCs. Rapid elevations in [Ca2+]i above 8 microM caused a biphasic capacitance incre...
متن کاملOtoferlin acts as a Ca2+ sensor for vesicle fusion and vesicle pool replenishment at auditory hair cell ribbon synapses
Hearing relies on rapid, temporally precise, and sustained neurotransmitter release at the ribbon synapses of sensory cells, the inner hair cells (IHCs). This process requires otoferlin, a six C2-domain, Ca2+-binding transmembrane protein of synaptic vesicles. To decipher the role of otoferlin in the synaptic vesicle cycle, we produced knock-in mice (OtofAla515,Ala517/Ala515,Ala517) with lower ...
متن کاملSubmillisecond Kinetics of Glutamate Release from a Sensory Synapse
Exocytosis-mediated glutamate release from ribbon-type synaptic terminals of retinal bipolar cells was studied using AMPA receptors and simultaneous membrane capacitance measurements. Release onset (delay <0.8 ms) and offset were closely tied to Ca2+ channel opening and closing. Asynchronous release was not copious and we estimate that there are approximately 5 Ca2+ channels per docked synaptic...
متن کاملCa 2 + influx and vesicle exocytosis at the mouse endbulb of Held : a comparison of two auditory nerve
The functional properties of mammalian presynaptic nerve endings remain elusive since most terminals of the central nervous system are not accessible to direct electrophysiological recordings. In this study, direct recordings were performed for the first time at endbulb of Held terminals to characterize passive membrane properties, voltage-gated Ca2+ channels (VGCCs) and Ca2+-dependent exocytos...
متن کاملA mechanism intrinsic to the vesicle fusion machinery determines fast and slow transmitter release at a large CNS synapse.
Heterogeneity of release probability p between vesicles in the readily releasable pool (RRP) is expected to strongly influence the kinetics of depression at synapses, but the underlying mechanism(s) are not well understood. To test whether differences in the intrinsic Ca2+ sensitivity of vesicle fusion might cause heterogeneity of p, we made presynaptic Ca2+-uncaging measurements at the calyx o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 18 شماره
صفحات -
تاریخ انتشار 2003